
J .  Fluid ilfech. (1971), vol. 46, part 4, pp. 659-671 

Printed in Great Britain 
659 

Baroclinic stability under non-hydrostatic conditions 

By PETER H. STONE 
Division of Engineering and Applied Physics, Harvard University 

(Received 20 April 1970) 

Eady’s model for the stability of a thermal wind in an inviscid, stratified, rotating 
system is modified to allow for deviations from hydrostatic equilibrium. The 
stability properties of the flow are uniquely determined by two parameters: the 
Richardsonnumber Ri, and the ratio of the aspect ratio t o  the Rossby number 6. 
The latter parameter may be taken as a measure of the deviations from hydro- 
static equilibrium (6 = 0 in Eady’s model). It is found that such deviations 
decrease the growth rates of all three kinds of instability which can occur in this 
problem: ‘geostrophic ’ baroclinic instability, symmetric instability, and Kelvin- 
Helmholtz instability. The unstable wavelengths for ‘geostrophic ’ and Kelvin- 
Helmholtz instability are increased for finite values of 6, while the unstable 
wavelengths for symmetric instability are unaffected. The ‘non-hydrostatic ’ 
effects (6 + 0) are significant for symmetric and Kelvin-Helmholtz instability 
when 6 2 1, but not for ‘geostrophic’ instability unless 6 9 1. Consequently, 
the first two types of instability tend to be suppressed relative to ‘geostrophic’ 
instability by ‘non-hydrostatic ’ conditions. Figure 3 summarizes the different 
instability regimes that can occur. In laboratory experiments symmetric in- 
stability can be studied best when 6 5 1 ,  while Kelvin-Helmholtz instability 
can be studied best when 6 < 1. 

1. Introduction 
In  most geophysical problems the assumption of hydrostatic equilibrium is a 

good one, and consequently discussions of baroclinic stability generally proceed 
from this assumption (see, for example, Phillips 1963). However, the development 
of the theory of baroclinic stability has been greatly aided by experimental 
studies of baroclinic stability (for example, see, Fultz et al. 1959, and Fowlis & 
Hide 1965), and in these studies the assumption of hydrostatic equilibrium is not 
such a good one. If the motions are geostrophic, then the vertical motions are 
relatively weak and hydrostatic equilibrium will be favoured even in the ex- 
periments, but this is still no guarantee of hydrostatic equilibrium if the aspect 
ratio is sufficiently large. In addition some recent experiments have been 
specifically oriented towards the non-geostrophic problem (Stone et al. 1969). 
Consequently, in this paper we present an analysis of how non-hydrostatic 
conditions will affect the various kinds of instability which can arise in a baroclinic 
zonal flow. 
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2. Mathematic model 
For our study we will use the model first introduced by Eady (1949)) but with 

the one difference that we will not assume hydrostatic equilibrium. Therefore 
we assume a Boussinesq adiabatic inviscid fluid with density p and thermal 
expansion coefficient ct located on a plane rotating about a vertical axis with 
angular speed Q, and with an acceleration of gravity g. If x, y and x are re- 
spectively the zonal, meridional, and vertical rectangular co-ordinates, and t the 
time, then the conservation equations for the zonal velocity u, the meridional 
velocity v, the vertical velocity w, the pressure P,  and the temperature T, are 

au av aw -+-+- = 0, ax ay az 
au 1 ap - = 2Qv---, 
at P ax 

1 aP 
= -2QU---, 

at P aY 

+ agT, at p az 

av 

dw l ap  

- 

- - _ - - -  

- = 0. 
d T  
at 

We assume that the fluid is contained between two horizontal planes at 2 = 0, H 
and is unbounded horizontally, so that the boundary conditions are 

w = 0  at z = O , H .  (2.6) 

Our basic flow state will consist of a zonal wind of magnitude uo with constant 
vertical shear and no horizontal shear, and a temperature field with constant 
stratification aT/az and a constant horizontal gradient related to uo by the 
thermal wind relation. It is convenient to use dimensionless variables, and, in 
order to put the equations in dimensionless form, we will use the following basic 
units: x N u0/2Q,  y N u0/2Q,  z N H ,  t N 1/2Q,  u N uo, v N uo, w N 2QH, 
T Hapjaz, and P N apgH2@/az. Equations (2.1)-(2.6)) now in terms of the 
dimensionless variables, become 

au av aw -+-+- = 0 )  ax ay ax 

- = 0, 
dT 
dt 

(2.10) 

(2.11) 

w = 0  on z = O , l .  (2.12) 
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Two dimensionless parameters appear, the Richardson number, 

(2.13) 

and s = 2QH/U,. (2.14) 

The parameter S is the ratio of the aspect ratio HIL to the Rossby number 
u,/2QL, with L being any appropriate horizontal scale. The basic flow state in 
terms of the dimensionless variables is 

v = u, = 0, 

u = 2, 

Y 
Ri 

T = z - -+ constant, 

(2.15) 

(2.16) 

(2.17) 

P = +zz - YZ - + constant. Ri (2.18) 

Now we assume small deviations from this basic flow state, and linearize 
(2.7)-(2.12). The coefficients of the linearized equations depend only on z, so 
we can assume perturbation solutions of the form exp {i(at + kx + hy)} .  The re- 
sulting equations for the z dependmce of the dimensionless perturbation variables 
are dw 

dz  
iku+ihv+- = 0, 

i ( r + k z ) u + ~  = V-ikRiP,  

i ( ~ r + k z ) ~  = -u-ihRiP, 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
dP 
dz 

i s2 (a+kz )w  = -Ri-+RiT, 

V 
i ( c T + k z ) T - 1 + w  = 0, (2.23) 

w = O  on z = O , 1 .  (2.24) 

With a little algebra this set of equations can be reduced to a single eigenvalue 
equation for the perturbation vertical velocity, 

R% 

(k2  + h2) Ri - ( k 2  + A’) 8 2 ( ~  + I c z ) ~ +  ~ w = 0. (2.25) 

When 6 = 0 this equation reduces to Eadfs (1949, equation 11, 11). Since the 
unit of horizontal scale is u,/2Q, the dimensionless wave-numbers k and h are 
simply the zonal and meridional Rossby numbers of the perturbation. 

The solutions of (2.25) under hydrostatic conditions (8 = 0) have been studied 
in two previous papers (Stone 1966; Stone 1970), hereinafter referred to as I and 
11, respectively. The results show that three basically different types of in- 
stability can occur when Ri > 0: ‘geostrophic’ baroclinic instability of the kind 
first discovered by Charney (1 947) and Eady (1949) (this type of instability is 
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actually only geostrophic if Ri $ 1 ,  but it is nevertheless conventional to refer 
to it as ‘geostrophic’); symmetric instability of the kind discussed by Solberg 
(1936); and an instability analogous to the Kelvin-Helmholtz instability of two 
superposed layers of fluid with different velocities and densities (in Eady’s model 
we have continuous variations of u and p) .  The numerical results of I1 showed 
that the analytical methods of I (namely, perturbation expansions of the solu- 
tion to the eigenvalue problem in powers of k and A)  are adequate to study these 
different kinds of instability. Consequently, we shall here use the samc method as 
in I, and in each of the next three sections we will consider how finite values of 6 
modify one of the different kinds of instability. Since 6 = 0 corresponds either 
to a zero aspect ratio or to an infinite Rossby number, finite values of 6 may be 
taken as either a measure of the deviations from hydrostatic equilibrium, or as 
a measure of the deviations from a non-rotating state. The former point of view 
is preferable for ‘geostrophic’ and symmetric instability, while the latter is 
preferable for Kelvin-Helmholtz instability. 

3. ‘ Geostrophic’ instability 
According t o  the results of I and 11, the maximum growth rates for this kind of 

instability occur for perturbations that are independent of the meridional direc- 
tion ( A  = 0) ,  have large zonal scales (k < l), and have small growth rates (u - k). 
Therefore, to find how these perturbations are modified under non-hydrostatic 
conditions, we set h = 0,  substitute 

in (2.25), obtaining 
G- = kc (3.1) 

(3.2) 
d2W 2 dw 

[ I -  k2(C +%)21 -FZ dx - [k2Ri - IC4d2(c + z)’] w = 0, 

and then expand the solution in powers of k2:  

w = wo+k2Wl+ ..., 
c = c,+~’c,+ .... 

(3.3) 

(3.4) 

The results of I1 showed that when S = 0 the maximum growth rate and 
corresponding zonal wave-number could be obtained with an accuracy of 7 yo or 
better if only the first two terms in the series (3.4) were retained. To find how these 
quantities are modified when 6 + 0, we shall also onIy retain the first two terms 
in (3.4). As we shall see below, the zonal wave-number corresponding to a 
maximum growth rate decreases when 6 + 0,  so retaining only the first two terms 
will be an even better approximation when 6 + 0. 

Examining (3.2), we see that, if 6 N 1, the non-hydrostatic effects are of order 
k4, and therefore to a first approximation will not affect the most rapidly growing 
‘geostrophic ’ instabilities. Only if S 1 will non-hydrostatic modifications be- 
come important. To determine these modifications we replace 6 in (3.2) by the 
aspect ratio for the perturbation, 

and assume that e N 1 when making the expansions (3.3) and (3.4). 

€ = kS, (3 .5 )  
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The resulting eigenvalue equations for the first two terms in the expansion are 

d2W, 2c dw, 
dz2 (co+x)2 a x  

Lw, = (c, + z ) ~  __ - 2 __ + [Ri - @(c,-, + x ) ~ ]  w,,. (3.7) 

Integrating (3.6) and applying boundary condition (2.24) we find 

W, = (c0 + x ) ~  - c;, 

We use the solubility condition, which follows from the definition of L and the 
boundary conditions on w, and wl, 

to obtain from (3.7) 

c l =  T- i ( 1  + Ri + g). 
1543 

(3.10) 

(3.11) 

From (3.4), (3.9) and (3.11), we find the approximate expression for the growth 
rate cr;(cr; = -1ma): 

(3.12) 

Equation (3.12) is plotted in figure 1 in order to illustrate how the growth rates 
of ‘geostrophic ’ instabilities are modified under non-hydrostatic conditions. The 
curves were drawn for Ri = 2 (different values of Ri do not change the qualitative 
behaviour) and for 6 = 0,10,40. The unstable wave-numbers and the growthrates 
decrease for large values of 6. If we maximize a+ as given by equation (3.12) with 
respect to k ,  we find that the most rapidly growing wave-number is given by 

kLax 2 - 63 [ - ~ ( l + R i ) + ( & ( l + R i ) z + ~ ) d ]  
1062 63 

(3.13) 

Under extreme non-hydrostatic conditions we find 

2 9  
lim km, = ($$)it (8) , (3.14) 
6+m 

and the corresponding maximum growth rate is 

(3.15) 

The most rapidly growing modes are not actually geostrophic when Ri 5 1, 
6 5 1, i.e. k,,, N 1. Nevertheless, neglecting the higher order terms in the ex- 
pansion in powers of k2remains a good approximation (see 11, figure 10, to  obtain 
an idea of how the exact and approximate solutions differ). 

The results of I and I1 showed that, for small enough values of Ri, the (geo- 
strophic ’ baroclinic instabilities lose their clear-cut identity. Specifically, the 
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growth rates of the perturbations with h 4 0 dominate over those with h = 0; 
the perturbation h = 0, k = k,,, represents a saddle point of ui(k, A) instead 
of a local maximum; and there is no longer a sharp delineation between the 
‘geostrophic ’ instabilities and the more rapidly growing symmetric instabilities. 

0.15 

0.10 

(‘i 

0.05 

C 
k 

FIGURE 1. Growth rates against zonal wave-number for ‘ geostrophic’ instabilities under 
hydrostatic (8 = 0) and non-hydrostatic (8 = 10, 40) conditions. 

To determine under what conditions the two types of instability are distinct, we 
need to know whether ci increases or decreases as A increases from zero. We may 
determine this to a first approximation by substituting u = kc into (2.25); re- 
placing 6 by s; letting k -+ 0 while assuming s N 1 so as to retain non-hydrostatic 
effects; and expanding the solution in powers of A. If we perform these operations, 
but do not yet expand in A, (2 .25)  becomes 

It is convenient to substitute into this equation 

w = exp [ -ih(c+z)] $-, 

so that the eigenvalue equation becomes 

(3.17) 

(3.18) 
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Now we expand the solution in powers of h2, 

II. = $o+h2$l+.. . , )  

c = CO+h2C,+ .... 
(3.19) 

The zero-order eigenvalue equation is again 

Lll.0 = 0, (3.20) 

so the zero-order solution for $, and co is the same as that found for wo and co 
in the k2 expansion ((3.8) and (3.9)). The first-order eigenvalue equation is 

- 2c1 [ 1 - Ri + E2(C0 + 2)2] II.o. 
= mz- (3.21) 

Again we find c1 by applying condition (3.10) with $,, and $I replacing wo and 

(3.22) [ Ri - 1 + g] . wl. We obtain i 
c l =  T- 

15,/3 

From (3.22) and (3.19) we see that the critical value of Ri is given by 

5 8  
Ri= I - - .  

42 
(3.23) 

For larger values of Ri, the perturbations h = 0 have greater growth rates than 
the perturbations 0 < h2 < 1, and consequently the ‘geostrophic’ instabilities 
are distinct. For smaller values of Ri, the perturbations h = 0 have smaller 
growth rates, and the symmetric and ‘geostrophic’ instabilities are no longer 
distinct. The accuracy of the critical value given by (3.23) may be determined by 
comparing its value when e = 0, Ri = 1 ,  with the exact value found in 11, 
Ri = 0.84. Since the maximum growth rates OCCIW for smaller values of k when 
B + 0, neglecting the higher-order terms in k2, in order to obtain (3.23)) will be 
an even better approximation when E + 0. The critical value of Ri may be re- 
lated directly to 6 instead of e, by substituting (3.13) for k,,, into e = dk, and 
then substituting for e in (3.23). We find 

6 2  = E ( 1  -Xi) (4-Ri). (3.24) 

Finally, we note that the eigenfunction for the most rapidly growing mode is 
changed little under non-hydrostatic conditions. The higher-order terms in the 
k2 expansion are always relatively small for this mode. The second term in the 
expa,nsion of w is largest when 6 = 0, and even then its amplitude never exceeds 
31 % of the amplitude of the first term (wl is given in $4 of I). Consequently, 
(3.8) is a good approximation to the most rapidly growing mode for ‘geostrophic ’ 
instability under all conditions. 

4. Symmetric instabilities 
The maximum growth rates for these instabilities are associated with the 

perturbations k = 0, h 9 1 , and have growth rates ci N 1 (see I and 11). Therefore, 
we can study their modifications under non-hydrostatic conditions by setting 
k = 0 in (2.25). The eigenvalue equation then becomes 

d2W dw 
ax= ax (1 - ~ 2 )  - + 2ih - - h2(Ri - ~ 2 6 2 )  w = 0. 
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I ts  solutions, subject to boundary conditions (2.24), are 

w = exp [ z2) sinmnx, 

Ri+S2 +x2+x4SZ(l-Ri)ji), (4.3) 
2 

where x=Almn,  m = l , 2 , 3  ,.... (4.4) 

Only those eigenvalues in (4.3) for which we choose the minus sign in front of 
the square root correspond to instability (a2 < 0). The growth rate is a maximum 
as x + a, and in this limit 

lim az = 
Ri + - [(Ri + S2)2  + 4S2( 1 - Ri)]a 

(4.5) 2 P  X+CC 

Thereforc, symmetric instability can occur if and only if Ri < 1 ,  regardless of 
the strength of the non-hydrostatic effects. The maximum growth rate under 
hydrostatic conditions is given by 

1 
lim a2 = 1-- (4.6) 
X+a3 Ri’ 
6-0 

and, under strongly non-hydrostatic conditions, by 

Ri- 1 
lim a2 = ~ 

X+CC 6 2  
(4.7) 

6+0 

As for the ‘geostrophic ’ instabilities, the growth rates of symmetric instabilities 
are decreased by non-hydrostatic effects, but in this case the effect is important 
when S N 1, not only when 6 > 1. 

For finite x and A, the growth rates decrease, falling monotonically to zero a t  

The dependence of growth rate on meridional wave-number for the symmetric 
instabilities is illustrated in figure 2. The curves are plotted for Ri = 4, but the 
qualitative behaviour would be no different for other values of Ri, so long as 
0 < Ri < 1. The depression of the growth rates under non-hydrostatic conditions 
is readily apparent from a comparison of the curves for 6 = 0,  1, and 2 in figure 2. 
The total x dependence of the growth rate under strongly non-hydrostatic 
conditions is given by 

1-x2(1-Ri) 
lim a2 = 
8-00 62x2 (4.9) 

One can easily show that the most rapidly growing symmetric perturbation 
( A  = co, k = 0) always corresponds to a local maximum in a J k ,  A )  by using the 
same method as in $ 3  of I. I n  particular, one expands the solution to (2.25) in 
series of the form, 

(4.10) 
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and then examines the first-order solution to see how the growth rate changes 
for the non-symmetric perturbations, k > 0. The expansion leads to a first-order 
equation of exactly the same form as (3.20) in I, except that now the coefficients 
depend on 8. Since the analysis of (3.20) in I did not depend on the values of the 
coefficients, the same result applies under non-hydrostatic conditions, namely, 
u&k, A )  has a local maximum at k = 0, h = u3 when Ri < 1. 

Ri= 
d = 0  

0 1 2 4 5 

Alma 

FIGURE 2. Growth rate against meridional wave-number for symmetric instabilities under 
hydrostatic (6 = 0) and non-hydrostatic (6 = 1,2)  conditions. 

Finally, we note that non-hydrostatic conditions do lead to one important 
change in the eigenfunction for the most rapidly growing symmetric instabilities. 
From the solution (4.2), we find that the meridional stream function for this 
mode is given by 

(4.11) 

This stream function corresponds to overturning cells with slanting sides of slope 

dzldy = 1 +at. (4.12) 

Since non-hydrostatic effects decrease the growth rates, the slope of the cells 
is decreased under non-hydrostatic conditions. The maximum growth rate 
occurs when 6 = 0,  5 = 00, and corresponds to 1 +u: = 1/Ri (cf. (4.6)). This is 
just the slope of the isotherms in the basic flow field (cf. (2.17)). Consequently, the 
slope of the meridional cells is always less than the slope of the is0therms.t 

5. Kelvin-Helmholtz instability 
According to the results of I, this type of instability is associated with 

relatively small-scale perturbations (k > 1) and has relatively large growth rates 
(ui N k). Therefore, we substitute (3.1) and (3.5) into (2.25) and let k - t  00, 

-f The statement in Stone et al. (1969) that the slope of the cells is greater than the slope 
of the isotherms under non-hydrostatic conditions is in error. 
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assuming that Ri, E and c are all of order unity, and that h 6 k. The eigenvalue 
equation becomes d2W 

-+ dz2 ( 1+- ;:) [&-@I = O. (5.1) 

In  this limit of large Rossby number (k B l ) ,  all rotational effects have com- 
pletely disappeared from the eigenvalue equation, and i t  has reduced to the form 
studiccl by Eliassen, Hoiland & Riis (1953). (In their modelh = 0, but their results 
also apply to (5.1) if we simply redefine Ri and e in an appropriate manner.) 
Unfortunately, a model of Kelvin-Helmholtz instability like theirs and ours, 
which has uniform shear in the basic flow (see (2.16)), does not give results typical 
of the same problem with an arbitrary flow profile. The problem for a shear flow 
with a general profile has been discussed in some detail by Drazin & Howard 
(1966, 95). Thus, in order to make a physically meaningful comparison with the 
results of $53 and 4, we shall use the results described by Drazin & Howard, 
rather than those of Eliassen et al. 

In particular, for realistic shear flows (i.e. those with non-uniform shear and 
110 discontinuities), Kelvin-Helmholtz instability occurs whenever 

Ri < a. (5.2) 
In  this criterion, Ri should be interpreted as the local value of the Richardson 
number, the value obtained by substituting au/ax for u0/B in the definition (2.13). 
Quantitative values of the unstable wave-numbers and growth rates depend on 
the actual profile of the shear flow, but the qualitative behaviour is the same in 
all cases. In  order of magnitude, the most unstable perturbations are those with 
infinite meridional scales and zonal scales comparable to the vertical scale of 

Their complex phase speeds are comparable to the speed of the basic flow, IcI N 1. 
Therefore, the order of magnitude of the growth rate is 

so long as  Ri is not very close to $. 
Equation (5.3) shows that so long as 6 < 1 our assumption k B 1 remains valid. 

Consequently, the effects of rotation will not modify the Kelvin-Helmholtz 
instabilities, and they correspond to distinctly different kinds of perturbations 
from the instabilities discussed in 993 and 4. Since both the symmetric and 
‘geostrophic’ instabilities have growth rates of order unity when S < 1, the 
Kelvin-Helmholtz instabilities will have much larger growth rates, unless Ri is 
very close to a. 

However, when 6 2 1, ( 5 . 3 )  shows that the assumption of large Rossby number 
(k % 1) is no longer valid, and the effects ofrotation will modify Kelvin-Helmholtz 
instabilities. For these values of 6,  the magnitudes of CT~, h and k associated with 
Kelviii-Helmholtz instability are just the same as those covered by the analysis 
in § 3. That analysis showed that the instability associated with these perturba- 
tions is essentially ‘geostrophic ’ instability when 6 2 1, and therefore the two 
types of instability are no longer distinct. I n  general, there will be a critical value 
of S,, which will mark the upper limit of S for which there exist two distinct 
maxima in the growth rates for the different perturbations, Ic 2 1 and k 5 1. 

the shear flow, h = 0, k N 1/6. (5.3) 

(Ti N klcl N l/S, (5.4) 
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6, will be of order unity provided that Ri < 4 and that Ri is not too close to 6. 
In  order to determine the exact value of 6, for different values of Ri, and how the 
two types of instability merge when 6 N S,, one would need to study a particular 
model with non-uniform shear in the basic flow. As we saw in $4, for small values 
of Ri and 6, the symmetric and ‘geostrophic’ instabilities are themselves not 
distinct, and there is a single maximum in the growth rate corresponding to 
symmetric instabilities. Therefore, the Kelvin-Helmholtz instabilities may merge 
directly with the symmetric instabilities if 6, is not too large. 

6. Summary 
Figure 3 summarizes the results of $93-5. It shows the different regimes 

of instability which can occur for different values of the two basic parameters, 
Ri and 6. The three solid curves represent the boundaries of the regions where 

4- G 

Ri 

0 

\ 
\ 

4 6 

S 
8 

FIGURE 3. Instability rhgimes in the Ri, 6 plane. G stands for ‘ geostrophic’ baroclinic 
instability, S for symmetric instability, and K for Kelvin-Helmholtz instability. Along the 
dotted line the maximum growth rates for C and S are equal. 

one particular kind of instability can occur, and within each region capital letters 
designahe which kind of instability can occur. G stands for ‘geostrophic’ in- 
stability; S for symmetric instability; and K for Kelvin-Helmholtz instability. 

Curve a is the neutral stability criterion for symmetric instability, Ri = 1. 
Symmetric instability can occur anywhere in the diagram below this curve. 

Curve b represents the curve along which the growing ‘geostrophic’ modes 
cease to have a local growth rate maximum in the (k,h) plane. This curve is 
given approximately by (3.24). Actually, in the diagram (3.24) was only used 
to plot curve b when 6 2 1. The exact intersection of the curve b with the Ri axis 
was taken from the results of 11, and the curve was interpolated for intermediate 
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values. ‘Geostrophic ’ instability can occur anywhere in the diagram above 
curve b . 

Curve c represents the curve along which Kelvin-Helmholtz instability ceases 
to be distinct from the other two kinds of instability. This curve is only indicated 
schematically, using our conclusion in $5 that it intersects the Ri axis a t  Ri = a, 
and the S-axis a t  a value of order unity. To delineate this curve more accurately 
would require a model with non-uniform shear in the flow. The results of such a 
model might show that curves b and c actually cross. If so, there would be a 
regime adjacent to  the &-axis and between these two curves b and c, where all 
three kinds of instability could occur. Kelvin-Helmholtz instability can occur 
allywhere in the diagram below curve c. 

The dotted line in figure 3 represents the curve along which the largest growth 
rates for symmetric and ‘geostrophic’ instability are equal. This curve was com- 
puted numerically by equating the two expressions for the maximum growth 
rate, (3.12) (evaluated for the value of k given by (3.13)) and (4.5). Above the 
dotted line, ‘ geostrophic ’ baroclinic instabilities grow more rapidly, whilc bclow 
it symmetric instabilities grow more rapidly. 

Because of all the approximations made in deriving the results displayed in 
figure 3, its quantitative features should not be taken too seriously. Rather, 
figure 3 is meant to  illustrate schematically what kinds of flow regimes can occur 
in a baroclinic flow. I n  general, finite values of 6 (which, according to  definition 
(2.14) may be interpreted as either a non-hydrostatic or a rotational effect) tend 
to suppress symmetric and Kelvin-Helmholtz instability relative to ‘geo- 
strophic ’ baroclinic instability. The deviations also tend to broaden the para- 
meter range in which symmetric and ‘ geostrophic ’ baroclinic instability can 
occur simultaneously . 

If one does not neglect dissipative effects, McIntyre (1969) has shown that two 
further kinds of symmetric baroclinic instability can occur. These ‘diffusive ’ 
instabilities generally have smaller scales than the kinds of instability we have 
discussed. Also, they have smaller growth rates, so long as the Prandtl number is 
not greatly different from unity. However, they can have larger growth rates if the 
Prandtl number is either extremely small or extremely large. 

I n  realistic geophysical situations, 6 < 1, so our main motivation has been to 
determine how laboratory studies of the various kinds of baroclinic instability 
will be affected by deviations from hydrostatic equilibrium. It is apparent from 
figure 3 that a laboratory study of symmetric instability should be designed so 
that S 5 1, and a laboratory study of Kelvin-Helmholtz instability should be 
designed so that 6 < 1. Consequently, it is of interest to estimate the value of 6 
in the experiments reported by Stone et al. (1969),whieh did contain symmetric 
instabilities. 

The definition of 6, (2.14), can be written in more convenient form if we use the 
thermal wind relation to  write u,, in terms of the horizontal temperature gradient. 
It is also convenient to write the horizontal and vertical temperature gradients 
in terms of the slope of the temperature field, 
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and the total temperature contrast A across a section of the fluid with horizontal 
and vertical scales L and H .  The resulting expression for 6 is 

4QyH -t SL) S =  ~ 

agAs ’ 

Stone et al. (1969) did not report measurements of s, but they did report the 
slope of the overturning symmetric cells. The results of Q 4 showed that the slope 
of the cells is always less than s, and therefore we have a lower bound on s, and 
this in turn will give an upper bound on 6. Using the figures quoted by Stone et al. 
(1 969), for their two pictures illustrating well-developed symmetric overturning, 
we find 

(6.3) 

Consequently, hydrostatic equilibrium should be a good approximation for their 
experiment. In fact, the different instability regimes they observed agree 
qualitatively with what one would expect from figure 3 when 6 < 1. 

} 
S < 0.06 (their figure a), 
6 d 0.2 (their figure 5 ) .  
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